National Repository of Grey Literature 5 records found  Search took 0.00 seconds. 
Fatigue crack front shape estimation
Zouhar, Petr ; Klusák, Jan (referee) ; Hutař, Pavel (advisor)
The presented master’s thesis deals with fatigue crack front shape estimation. The aim of this thesis is to create an iterative process leading to the real fatigue crack front shape. Thesis is solved using finite element method. The work is divided into two logical parts. The first part of the thesis describes the basic concepts of linear elastic fracture mechanic (LEFM), methods used for estimation of stress intensity factor and stress singularity exponent. The first part further describes some phenomenon’s accompanying the mechanism of fatigue crack growth as for example crack tip curving and crack closure. In the second part of the thesis there is studied an affect of the free surface on the fracture parameters, especially the affected distance from the free surface is determined. Based on the assumption of a constant stress intensity factor and stress singularity exponent along the crack front, an iterative process leading to fatigue crack front shape is presented. The accuracy of the result is discussed by comparing of obtained crack front shapes with experimental data at the end of the thesis.
Possibilities of estimation of selected fracture parameters under conditions of LEFM
Zouhar, Petr ; Hutař, Pavel (referee) ; Ševčík, Martin (advisor)
The presented bachelor´s thesis deals with possibilities of estimation of selected fracture parameters under conditions of linear elastic fracture mechanic (LEFM). The aim of this thesis is to quantify the accuracy of specific methods for the estimation of fracture parameters from a known stress and strain field obtained using numerical methods. Thesis is solved using finite element method. The work is divided into two logical parts. The first part of the thesis describes the basic concepts of LEFM and selected methods used for estimation of fracture parameters, namely the stress intensity factor, strain energy release rate and J-integral. A detailed description of the numerical model, a sensitivity analysis of the FEM mesh density and obtained results are described in the second part, focused on the solution of the problem,. The accuracy of each method is expressed by comparing with a known reference value of stress intensity factor. The applicability of selected methods for estimation of the stress intensity factor is shown on a practical example of three-dimensional body containing a crack.
A hybrid boundary element based aeroelastic model for flexible wing.
Prasad, Chandra Shekhar ; Pešek, Luděk
The paper describes development of medium delity aeroelastic numerical model for fast aeroelastic analysis of the flexible aeronautical structures e.g. wings, rotor blades etc. The numerical model is developed particularly for the incompressible low subsonic flow regime application. For the flow field modeling boundary element based hybrid panel method flow solver with viscous-inviscid coupling strategy have been successfully developed and implemented here.The unsteady flow field is modeled using hybrid/modi ed panel method where, integral boundary layer theory (vis-cous part), surface panel method (potential flow inviscid part) and vortex particle method (separated shear layer modeling) are coupled together. The proposed model can simulate both attached and separated flow fields. The estimated aerodynamic lift coefficients and the pressure coefficient are compared with experimental results for static and dynamic stall flow conditions. Furthermore, the results from new aeroelastic model will be compared with classical CFD-CSD based aeroelastic models for efficiency and accuracy check. The proposed methodology for the aeroelastic analysis of long exible aeronautical structure will provide researchers and engineers a fast, cost effective and efficient tool for aeroelastic analysis for different design at preliminary design stage where large numbers of design iteration are required within short time frame.
Fatigue crack front shape estimation
Zouhar, Petr ; Klusák, Jan (referee) ; Hutař, Pavel (advisor)
The presented master’s thesis deals with fatigue crack front shape estimation. The aim of this thesis is to create an iterative process leading to the real fatigue crack front shape. Thesis is solved using finite element method. The work is divided into two logical parts. The first part of the thesis describes the basic concepts of linear elastic fracture mechanic (LEFM), methods used for estimation of stress intensity factor and stress singularity exponent. The first part further describes some phenomenon’s accompanying the mechanism of fatigue crack growth as for example crack tip curving and crack closure. In the second part of the thesis there is studied an affect of the free surface on the fracture parameters, especially the affected distance from the free surface is determined. Based on the assumption of a constant stress intensity factor and stress singularity exponent along the crack front, an iterative process leading to fatigue crack front shape is presented. The accuracy of the result is discussed by comparing of obtained crack front shapes with experimental data at the end of the thesis.
Possibilities of estimation of selected fracture parameters under conditions of LEFM
Zouhar, Petr ; Hutař, Pavel (referee) ; Ševčík, Martin (advisor)
The presented bachelor´s thesis deals with possibilities of estimation of selected fracture parameters under conditions of linear elastic fracture mechanic (LEFM). The aim of this thesis is to quantify the accuracy of specific methods for the estimation of fracture parameters from a known stress and strain field obtained using numerical methods. Thesis is solved using finite element method. The work is divided into two logical parts. The first part of the thesis describes the basic concepts of LEFM and selected methods used for estimation of fracture parameters, namely the stress intensity factor, strain energy release rate and J-integral. A detailed description of the numerical model, a sensitivity analysis of the FEM mesh density and obtained results are described in the second part, focused on the solution of the problem,. The accuracy of each method is expressed by comparing with a known reference value of stress intensity factor. The applicability of selected methods for estimation of the stress intensity factor is shown on a practical example of three-dimensional body containing a crack.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.